Locomotor patterns of the leading and the trailing limbs as solid and fragile obstacles are stepped over: Some insights into the role of vision during locomotion |
Author(s):
, ,Journal/Book: J Motor Behav. 1996; 28: 1319 Eighteenth St NW, Washington, DC 20036-1802. Heldref Publications. 35-47.
Abstract: The issues explored in this article are the role of exproprioceptive input and the nature of exteroceptive input provided by the visual system in the control of limb elevation as obstacles are stepped over during locomotion. In the first experiment, the differences in limb trajectory of movements over solid and fragile obstacles of similar dimensions were examined. Subjects increased their toe clearance, vertical position of the hip, and the hip vertical velocity when going over a fragile obstacle with the leading limb. This suggests that in addition to visually observable properties of obstacles such as height or width, other properties, such as rigidity or fragility, which may be classified as visually inferred, also influence the limb trajectory. Part of the first and the second experiment was focused on understanding differences in leading limb and trailing limb trajectory over obstacles. The toe clearance of he trailing limb was lower for smaller obstacles. There was no consistent correlation between the toe clearance values of the leading and trailing limbs. The variability in toe clearance was high-rr for the trailing limb, which is attributable to lack of visual exproprioceptive input about trailing limb movements and to the shorter time available following toe-off to fine-tune the trailing limb trajectory. Because the body center of mass is moving toward the supporting foot when the trailing limb goes over obstacles and the trailing limb foot is moving up, the chances of a trip are minimized and recovery from an unexpected trip are more likely. These results highlight the role of exproprioceptive input provided by the visual system and possible cognitive influences on the limb trajectory as one travels over uneven terrains.
Note: Article AE Patla, Univ Waterloo, Dept Kinesiol, Neural Control Lab, Waterloo, on N2L 3G1, Canada
Keyword(s): exproprioceptive input; exteroceptive input; leading limb; locomotion; obstacle avoidance; solid versus fragile obstacles; trailing limb; VISUAL CONTROL
© Top Fit Gesund, 1992-2024. Alle Rechte vorbehalten – Impressum – Datenschutzerklärung