Heilpflanzen-Welt - Die Welt der Heilpflanzen!
Heilpflanzen-Welt - Natürlich natürlich!
October 2022

Garlic and associated allyl sulfur components inhibit N-methyl-N-nitrosourea induced rat mammary carcinogenesis

Author(s): Liu, J., Green, J., Dangler, C., Milner, J.

Abstract: Our previous studies demonstrated that dietary garlic powder supplementation inhibits N-nitrosamine induced DNA alkylation in liver and mammary tissue. The present studies compared the impact of dietary supplementation with garlic powder or two garlic constituents, water-soluble S-allyl cysteine (SAC) and oil-soluble diallyl disulfide (DADS), on the incidence of mammary tumorigenesis induced by N-methyl-N-nitrosourea (MNU). Female Sprague-Dawley rats were fed semi-purified casein based diets with or without supplements of garlic powder(20g/kg), SAC (57 micromol/kg) or DADS (57 micromol/kg) for 2 weeks prior to treatment with MNU (15 mg/kg body wt). Garlic powder, SAC and DADS supplementation significantly delayed the onset of mammary tumors compared to rats receiving the unsupplemented diet. Tumor incidence 23 weeks after MNU treatment was reduced by 76, 41 and 53% in rats fed garlic, SAC and DADS, respectively, compared to controls (P 0.05). Total tumor number was reduced 81, 35 and 65% by these supplements, respectively (P 0.05). In a separate study the quantity of mammary DNA alkylation occurring 3 h after MNU treatment was reduced in rats fed garlic, SAC or DADS (P 0.05). Specifically, O(6)-methylguanine adducts were reduced by 27, 18 and 23% in rats fed supplemental garlic, SAC and DADS, respectively, compared to controls. N(7)-Methylguanine adducts decreased by 48, 22 and 21% respectively, compared to rats fed the control diet. These studies demonstrate that garlic and associated allyl sulfur components, SAC and DADS, are effective inhibitors of MNU-induced mammary carcinogenesis.

Keyword(s): Cysteine [therapeutic use]

Search only the database: 


Zurück | Weiter

© Top Fit Gesund, 1992-2022. Alle Rechte vorbehalten – ImpressumDatenschutzerklärung