J Ethnopharmacol. 1992 Aug; 37(1): 1-11.
The pharmacology of extinction.
Department of Pharmacology, College of Medicine, University of Arizona, Tucson 85724.
It is impossible to predict what compounds of pharmacological interest may be present in an unexamined species. The extinction of such species may result, therefore, in the loss of therapeutically significant compounds. The fact that science will never know what has been lost does not lessen the significance of the loss. A number of species are discussed to exemplify the potential loss. Ginkgo biloba is an ancient plant, apparently saved from a natural extinction by human intervention. From this tree, the ginkgolides have been isolated. These are potent inhibitors of platelet activating factor and hold promise in the treatment of cerebral ischemia and brain edema. Two species, the tree Taxus brevifolia and the leech Hirudo medicinalis, are threatened as a result of human activity. Both have recently yielded complex compounds of therapeutic importance. The antitumor agent, taxol, is obtained from T. brevifolia and the thrombin inhibitor, hirudin, is found in H. medicinalis. Catharanthus roseus, source of the anticancer agents vincristine and vinblastine, although not threatened, derives from a largely unexamined but severely stressed ecosystem of some 5000 plant species. In other examples, ethnobotanical knowledge of certain plants may be lost while the species survive, as exemplified by the suppression of the Aztec ethnobotany of Mesoamerica by the invading Spanish. Finally, the fallacy of the 'snail darter syndrome', where species may be viewed as too insignificant to worry about, is exposed by consideration of the pharmacological activities of a sea hare (a shell-less marine mollusc) and various leeches.
© Top Fit Gesund, 1992-2025. Alle Rechte vorbehalten – Impressum – Datenschutzerklärung