Heilpflanzen-Welt - Die Welt der Heilpflanzen!
Heilpflanzen-Welt - Natürlich natürlich!
December 2024

Evidence for an essential histidine residue in 4S-limonene synthase and other terpene cyclases

Author(s): Gershenzon, J., Miyazaki, J., Croteau, R.

Journal/Book: Archives of Biochemistry and Biophysics. 1992; 299(1): 77-82.

Abstract: (4S)-Limonene synthase, isolated from glandular trichome secretory cell preparations of Mentha x piperita (peppermint) leaves, catalyzes the metal ion-dependent cyclization of geranyl pyrophosphate, via 3S-linalyl pyrophosphate, to (-)-(4S)-limonene as the principal product. Treatment of this terpene cyclase with the histidine-directed reagent diethyl pyrocarbonate at a concentration of 0.25 mM resulted in 50% loss of enzyme activity, and this activity could be completely restored by treatment of the preparation with 5 mM hydroxylamine. Inhibition with diethyl pyrocarbonate was distinguished from inhibition with thiol-directed reagents by protection studies with histidine and cysteine carried out at varying pH. Inactivation of the cyclase by dye-sensitized photooxidation in the presence of rose bengal gave further indication of the presence of a readily modified histidine residue. Protection of the enzyme against inhibition with diethyl pyrocarbonate was afforded by the substrate geranyl pyrophosphate in the presence of Mn2+, and by the sulfonium ion analog of the linalyl carbocation intermediate of the reaction in the presence of inorganic pyrophosphate plus Mn2+, suggesting that an essential histidine residue is located at or near the active site. Similar studies on the inhibition of other monoterpene and sesquiterpene cyclases with diethyl pyrocarbonate suggest that a histidine residue (or residues) may play an important role in catalysis by this class of enzymes.

Keyword(s): Binding-Sites


Search only the database: 

 

Zurück | Weiter

© Top Fit Gesund, 1992-2024. Alle Rechte vorbehalten – ImpressumDatenschutzerklärung